三角函數的積化和差公式為三角函數的一個重要公式,下面總結了三角函數的積化和差公式,供大家參考。
三角函數積化和差公式
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
積化和差的記憶口訣
積化和差得和差,余弦在后要相加;異名函數取正弦,正弦相乘取負號。
解釋:
(1)積化和差最后的結果是和或者差;
(2)若兩項相乘,后者為cos項,則積化和差的結果為兩項相加;若不是,則結果為兩項相減;
(3)若兩項相乘,一項為sin,另一項為cos,則積化和差的結果中都是sin項;
(4)若兩項相乘,兩項均為sin,則積化和差的結果前面取負號。
兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
